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Abstract— This paper presents a method for Simultaneous
Localization and Mapping (SLAM), relying on a monocular
camera as the only sensor, which is able to build outdoor,
closed-loop maps much larger than previously achieved with such
input. Our system, based on the Hierarchical Map approach [1],
builds independent local maps in real-time using the EKF-SLAM
technique and the inverse depth representation proposed in [2].
The main novelty in the local mapping process is the use of a
data association technique that greatly improves its robustness in
dynamic and complex environments. A new visual map matching
algorithm stitches these maps together and is able to detect
large loops automatically, taking into account the unobservability
of scale intrinsic to pure monocular SLAM. The loop closing
constraint is applied at the upper level of the Hierarchical Map
in near real-time.

We present experimental results demonstrating monocular
SLAM as a human carries a camera over long walked trajectories
in outdoor areas with people and other clutter, even in the more
difficult case of forward-looking camera, and show the closing of
loops of several hundred meters.

I. I NTRODUCTION

Simultaneous Localization And Mapping (SLAM) is one
of the most active research fields in robotics, with excellent
results obtained during recent years, but until recently mainly
restricted to the use of laser range-finder sensors and predom-
inantly building 2D maps (see [3] [4] for a recent review).
Under these conditions, robust large-scale indoor and outdoor
mapping has now been demonstrated by several groups around
the world.

It is more challenging to attempt SLAM with standard cam-
eras as the main sensory input, since the essential geometry
of the world does not ‘pop-out’ of images in the same way
as it does from laser data. Nevertheless, the combination of
detailed 3D geometric and photometric information available
from cameras means that they have great promise for SLAM
applications of all types, and recent progress has been very en-
couraging. In particular, recent robotic SLAM systems which
use odometry and single cameras [5], [6], stereo rigs [7],
omnidirectional cameras [8] or inertial sensors [9] have all
demonstrated reliable and accurate vision-based localisation
and mapping, often in real-time and on increasingly large
scales. Also impressive have been stereo vision-based ‘visual
odometry’ approaches [10], [11] which match large numbers
of visual features in real-time over sequences and obtain highly

accurate local motion estimates, but do not necessarily aim to
build globally consistent maps.

In this paper, we consider the extreme case where the only
sensory input to SLAM is a single low-cost ‘webcam’, with
no odometry, inertial sensing or stereo capability for direct
depth perception – a camera carried by a walking person, for
example. Under these conditions, successful real-time SLAM
approaches have been limited to indoor systems [12]–[14]
which can build maps on the scale of a room. Such work
on estimating motion and maps from a single moving camera
must also be compared with the wealth of work in visual
structure from motion. (e.g. [15]) where high quality recon-
structions from image sequences are now routinely obtained,
but requiring significant off-line optimisation processing.

Now we show that an approach which builds and joins local
SLAM maps, previously proven in laser-based SLAM, can
be used to obtain much larger outdoor maps than previously
built with single camera only visual input and works in near
real-time. The keys are the efficient and accurate building of
local submaps, and robust matching of these maps despite
high localisation uncertainty. Other approaches to vision-based
closing of large loops in SLAM have used appearance-based
methods separated from the main mapping representation [8],
[16]. While these methods are certainly valuable, here we show
that under the conditions of the experiments in our paper we
are able to directly match up local maps by photometric and
geometric correspondences of their member features.

One of the main difficulties of monocular visual SLAM
is landmark initialization, because feature depths cannot be
initialized from a single observation. In this work we have
adopted the inverse-depth representation proposed by Montiel
et al. [2], which performs undelayed initialization of point
features in EKF-SLAM from the first instant they are detected.
In that work, data association was performed by predicting
the feature locations in the next image and matching them by
correlation. In this paper we demonstrate that adding a Joint
Compatibility test [17] makes the method robust enough to
perform for the first time real-time monocular SLAM walking
with a hand-held camera in urban areas. In our experiments,
the inverse depth representation allows SLAM to benefit from
features which are far away from the camera, which are
revealed to be essential to maintaining good angular accuracy



Fig. 1. Experimental setup: a hand-held camera, a firewire cable and a laptop.

in open areas. The joint compatibility technique is able to
successfully reject incorrect data associations which jeopardize
the operation of SLAM in repetitive or dynamic environments.

To attack the problem of mapping large areas, the technique
is applied to build several independent local maps that are
integrated into the Hierarchical Map approach proposed by
Estrada et al. [1]. Two of the main factors that fundamentally
limit EKF-based SLAM algorithms are (i) the processing time
associated with the EKF update which isO(n2) in the number
of map features; and (ii) cumulative linearisation errors in the
EKF that ultimately contribute to biased and overconfident
state estimates which eventually break the filter, usually via
poor data association. Hierachical SLAM addresses both of
these issues. First, by segmenting the problem into smaller
chunks of bounded size, the computational time of the filter is
bounded (i.e.O(1)). Second, since each local map effectively
resets the base frame, linearisation errors only accumulate
within a local map and not between maps. The main difficulty
appearing here is that the scale in pure monocular vision is
not observable, so the scale of the different local maps is not
consistent. We propose a novel scale invariant map matching
technique in the spirit of [18], able to detect loop closures,
that are imposed in the upper level of the Hierarchical Map,
obtaining a sub-optimal SLAM solution in near real time.

The rest of the paper is structured as follows. Section II
describes in detail the local map building technique proposed
and presents some experiments showing its robustness in real
environments. Section III presents the map matching algorithm
and the loop optimization method used at the global level of
the Hierarchical Map. Section IV demonstrates the technique
by mapping a courtyard by walking with the camera in hand
(see fig. 1) along a loop of several hundred meters. The
conclusions and future lines of research are drawn in section
V.

II. BUILDING MONOCULAR LOCAL MAPS

A. EKF SLAM with inverse depth representation

To achieve scalability to large environments we have
adopted the Hierarchical Map method proposed in [1]. This
technique builds a sequence of local maps of limited size using

the EKF-SLAM approach [19]. We have observed that, in the
case of monocular SLAM, the use of the Iterated Extended
Kalman Filter (IEKF) [20] improves the accuracy of the map
and the camera trajectory, at the price of a small increase in
the computational cost. In any case, by limiting the maximum
size of the local maps, the computation time required per step
during the local map building is bounded by a constant.

The state vector of each local mapMi comprises the
final camera locationxi

v and the 3D location of all features
(yi

1 . . .yi
n), using as base referenceB, the camera location at

the beginning of the local map. We also store the complete
camera trajectory inside each local map, that is used only for
displaying results. For the state representation inside each local
map, we use the inverse-depth model proposed by Montielet
al. [2]:

xT = (xT
v ,yT

1 ,yT
2 , . . . ,yT

n ) (1)

where:
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 (2)

yi = (xi yi zi θi φi ρi)T (3)

This feature representation codes the feature state as the
camera optical center location(xi yi zi) when the feature point
was first observed, and the azimuth and elevation(θi φi) of
the ray from the camera to the feature point. Finally, the depth
di along this ray is represented by its inverseρi = 1/di. The
main advantage of the inverse-depth parametrization is that
it allows consistent undelayed initialization of the 3D point
features, regardless of their distance to the camera. In fact,
distant points, or even points atinfinity are modelled and
processed in the same way. This is in contrast with most
current techniques that delay the use of a feature until the
baseline is big enough to compute its depth [8], [12].

The camera statexv is composed of the camera position
rBC and orientation quaternionqBC and its linear and angular
velocitiesvB andwC . The process model used for the camera
motion is a constant velocity model with white Gaussian noise
in the linear and angular accelerations. Using pure monocular
vision, without any kind of odometry, the scale of the map is
not observable. However, by choosing appropriate values for
the initial velocities and the covariance of the process noise,
the EKF-SLAM is able to ”guess” an approximate scale for
each local map, as will be shown in the experimental results.

B. Feature extraction and matching

Now we focus on the features selection which make up
the local maps. Our goal is to be able to recognize the same
features repeatedly during local map building and also for
loop closing detection and optimization. So what we need
are persistent and realiable features that ensure us with high
probability a quality tracking process. For this very purpose we



have followed the approach of Davisonet al. [12], [21], who
showed that selecting salient image patches (11 x 11 pixels)
is useful for performing long-term tracking.

To detect salient image regions we use the Shi and Tomasi
operator [22] with some modifications which result in more
salient and better trackable features. The first modification is
the application of a gaussian weighted window to the Hessian
matrix (4) which makes the response of the detector isotropic
and results in patches better centered around the corner or
salient point.

H =
(

Gσ ∗ (IxIx) Gσ ∗ (IxIy)
Gσ ∗ (IxIy) Gσ ∗ (IyIy)

)
(4)

Apart from using the Shi and Tomasi response:

λmin > λthreshold (5)

where λmax and λmin are the maximum and minimum
eigenvalues of the Hessian image matrix (4) respectively we
only accept as good feature points those whose two eigenval-
ues have similar magnitude:

λmax/λmin < ratiothreshold (6)

This avoids selecting regions with unidirectional patterns
that cannot be tracked reliably. Instead of using all the features
that passed both tests, we have implemented a simple selection
algorithm that forces a good distribution of features on the
image. The features that pass the tests are stored in a 2D-
spatial structure. When the number of tracked features falls
bellow a threshold, the spatial structure is used to find the
best feature (with higher Shi-Tomasi response) from the image
region with less visible features.

For tracking the features on the sequence of images we use
the active search approach of Davison and Murray [21]. The
stochastic map is used to predict the location of each feature
in the next image and compute its uncertainty ellipse. The
features are searched by correlation inside the uncertainty el-
lipse using normalised sum-of-squared-differences. This gives
enough robustness with respect to light condition changes and
also to small viewpoint changes.

C. Joint compatibility

It is well known that data association is one of the most
critical parts in EKF-SLAM, since a few association errors
may ruin the quality of an otherwise good map. The active
search strategy presented gives good feature matchingsmost
of the time. However, since we are building maps of large
outdoor dynamic environments we have to deal with two
well differentiated problems. The first problem is that moving
objects produce valid matches – in that they correspond to
the same point on the object – which nevertheless violate
the basic assumption of static features made by most SLAM
techniques. The second problem arises in the presence of
ambiguous matches caused, for example, by repeated texture
in the environment. Such ambiguous matches are more likely

Algorithm 1 Simplified Joint Compatibility:
H = simplified JCBB ()

H ⇐ [true]m

if not joint compatibility(H) then
Best⇐ []
JCBB([], 1)
H ⇐ Best

end if

Algorithm 2 Recursive Joint Compatibility:
JCBB (H, i) : find pairings for observationEi

if i = m then {Leaf node}
if num pairings(H) > num pairings(Best)then

Best⇐ H
else if num pairings(H) = num pairings(Best)then

if D2(H) < D2(Best) then
Best⇐ H

end if
end if

else{Not leaf node}
if joint compatibility([H true]) then

JCBB([H true], i + 1) {pairing (Ei, Fj) accepted}
end if
if num pairings(H) + m - i ≥ num pairings(Best)then
{Can do better}
JCBB([H false], i + 1){Star node:Ei not paired}

end if
end if

with “young” features whose 3D locations (especially depth)
are still uncertain, leading to large search regions.

One approach to tackling the problems of repeated patterns
is to try to avoid it altogether by selecting features that are
highly salient [16]. In this work we take the complementary
approach of explicitly detecting and rejecting these matches
using the notion of Joint Compatibility, as proposed in [17].
The idea is that the whole set of matchings accepted in one
image must bejointly consistent.

As the active search gives only one candidate for each
matched feature, and the matchings are usually good, we have
implemented a simplified version of the Joint Compatibility
algorithm that reduces the computational cost of including a
backtracking algorithm at each update of the EKF (see Alg.
1). The algorithm tries first the optimistic hypothesisH that
each image featureEi pairs correctly with its corresponding
map featureFi verifying the joint compatibility using the
Mahalanobis distance and the Chi-squared distribution:

D2
H = νT

HC−1
H νH < χ2

d,α (7)

whered = 2· num pairings(H), α is the desired confidence
level (0.95 by default) andνH andCH are the joint innovation
and its covariance:



Fig. 2. Incorrect matches successfully rejected by the joint compatibility algorithm (marked in magenta).

(a) Without Joint Compatibility (b) With Joint Compatibility

Fig. 3. Local map obtained in a dynamic outdoor environment along a U-shaped trajectory. The colored ellipses represent the uncertainty of feature localization
and the yellow line on the map corresponds to the computed camera trajectory. Red: features predicted and matched, Blue: features predicted but not found,
Yellow: features not predicted.

νH = zH − hH(x̂) (8)

CH = HHPHT
H + RH (9)

This compatibility test only adds the computation of equa-
tion (7), because we already need the innovation and its
covariance for the update phase of the Kalman filter. Only
when the innovation test of the complete hypothesis is not
satisfied, our simplified algorithm performs the branch and
bound search of the JCBB algorithm to find the largest subset

of jointly compatible matchings, as shown in Alg. 2. As the
active search has only found one possible pairFi for each
measurementEi, the solution space consists of a binary tree
(accepting or rejecting each possible pair) whose depth is
the number of measurementsm. It should be noted that the
results of JCBB are order-independent. Even when a matching
has been accepted, the ”star node” part of the algorithm also
analyzes all the hypothesis that do not contain that matching.

An alternative technique that that could be used to detect
false matchings is RANSAC (see for example [10]). Our



JCBB technique has two advantages: it allows matchings with
features that have been occluded for a while and it is able to
reject outliers using all points in the same way, even points
with high depth uncertainty or points at infinity.

To verify the robustness of this technique we conducted a
mapping experiment in an outdoor populated area. Most of the
time, all matchings found by correlation were correct, and the
branch and bound algorithm was not executed. Figure 2 shows
two typical cases where the Joint Compatibility successfully
rejected wrong matchings on dynamic and repetitive parts of
the environment. Even in this cases, the computational cost
added is negligible. The key question is: if the number of bad
matchings is so small, how bad can they be for the SLAM
process? The answer is given in figure 3. We followed a
long U-shaped trajectory walking with a hand-held camera
looking forward. Figure 3(a) shows the dramatic effect of the
moving people and the repetitive environment patterns. The
estimated trajectory is completely wrong and the monocular
SLAM algorithm is trying to find in the image features that are
actually well behind the camera (drawn in yellow). Running
on the same dataset, the inverse-depth SLAM algorithm with
the Joint Compatibility test gives the excellent map of figure
3(b). To our knowledge this is the first demonstration of a
real-time SLAM algorithm walking with a camera in hand in
a large outdoor environment.

III. H IERARCHICAL SLAM

A. Building sequences of local maps

To achieve scalability to large environments, the technique
described in the previous section is used to build a sequence of
independent local maps of limited size that are later combined
using the Hierarchical Map technique [1]. In this way, the
computational cost of the EKF-SLAM iteration is constrained
to real-time operation. Once the current map reaches the
maximum number of features, it is freezed and a new local
map is initialized, using as base reference the current camera
location. To maintain the statistical independence between
local maps, no information is transferred from the previous
map to the new one.

When a new map is started, the set of features currently
visible in the old map are inserted into the new map asnew
inverse-depth features, using their image locations as theonly
knowledge of their 3D locations. This is important since,
though it may seem to be throwing away the prior knowledge
of their locations from the previous map, it is only through
doing so that the local maps remain independent, yielding
the desired O(1) update. It is, however important that there
is a group of features which are represented in adjacent maps,
since only through these common features can loop-closing
and trajectory refinement be effected. These common features
are used to estimate the change on the scale factor that may
exists between consecutive maps.

At this point, we have a series of local maps (M1, . . . , Mn)
containing the state vector defined in eq. (1) and its covariance
matrix. The final camera locationxi

C in mapi corresponds to
the base reference of mapi +1. The transformations between

the successive local maps and their covariances constitute the
global level of the Hierarchical Map:

hmap.x̂ =




T W
1

T 1
2
...

T n−1
n


 =




x̂1
C

x̂2
C
...

x̂n
C


 (10)

hmap.P =




P1 0 . . . 0

0 P2

...
...

. . . 0
0 . . . 0 Pn




(11)

B. Scale-invariant map matching

By composing the camera state locationsT i−1
i we are able

to compute the current camera location and hypothesize loop
closures. To verify the loop we have developed a map match-
ing algorithm (see Algorithms 3 and 4) able to deal with the
presence of an unknown scale factor between the overlapping
maps. First, the method uses normalized correlation to find
features in both maps that are compatible (unary constraints).
Then, a specialized version of the Geometric Constraints
Branch and Bound (GCBB) algorithm [23] is used to find
the maximal subset of geometrically compatible matchings,
by comparing the relative distances between feature points
is space (binary constraints). Although the results of the
algorithm is also order independent, its running time may
benefit from a good ordering (most promising matchings first).
Then, the homogeneous transformationT i−1

j and the scale
change between both maps is estimated from the subset of
matched features. An example of loop detection using this
technique is shown in figure 4. This technique is able to
find loops when the view points in both maps are similar.
To detect loops with arbitrary viewpoints, invariant features
such as SIFT would be needed.

C. Loop optimization

We have local independent maps scaled to the same refer-
ence and we also know the relation between two overlapping
maps that close a loop. Then, the Iterated Extended Kalman
Filter [20] is used for re-estimating the transformations be-
tween the maps that from the loop, as proposed in [1]. The
measurementz corresponds to the transformation estimated by
the map matching algorithm, and the measurement function is
given by the compositions of all local map states that form
the hierarchical map:

z = h(x) = T i−1
i ⊕ T i

i+1 ⊕ . . .⊕ T j−1
j (12)

IV. EXPERIMENTAL RESULTS

To validate the proposed SLAM method we have conducted
an experiment in a large and dynamic outdoor environment.
The experimental setup consists of a low cost Unibrain
IEEE1394 camera with a 90 degree field of view, acquiring
monochrome image sequences of 320x240 resolution at 30



Fig. 4. Loop closure detection. Matchings found between two maps (left) and aligned maps (right).

Algorithm 3 Map Matching GCBB with variable scale:
H = mapmatchingGCBB (observations, features)

unary⇐ computeunaryconstraints(features, observations)
binary.O.distances⇐ estimatedistances(observations)
binary.F.distances⇐ estimatedistances(features)
Best.H⇐ []
Best.scale⇐ -1.0
variablescaleGCBB([], 0)
H ⇐ Best

fps, a firewire cable and a laptop (see Fig. 1). We acquired a
real image sequence of 6300 frames walking in a courtyard
along a loop trajectory of around 250 meters, with the camera
in hand, looking to one side. The sequence was processed with
the proposed algorithms on a desktop computer with an Intel
Core 2 processor at 2,4GHz. Figure 5(a) shows the sequence
of independent local maps obtained with the inverse-depth
EKF-SLAM using joint compatibility. As it can be seen in
the figure, the algorithm ”guesses” an approximate scale that
is different for each local map. When a map is finished, it
is matched with the previous map and the relative change on
the scale is corrected, as shown in figure 5(b). When a loop
is hypothesized, the map matching algorithm is executed to
find the loop closure, and the loop constraint is applied at the
upper level of the Hierarchical Map, giving the result of figure
5(c).

The local map building process has been tested to run in
real-time (at 30Hz) with maps up to 60 point features. During
the experiments, the joint compatibility algorithm consumed
200µs at every step and, when occasionally the complete
search is executed, the computation cost increases only up
to 2ms, which is an acceptable cost for the great increase in
robustness and precision obtained.

The map matching, scale adjustment and loop optimization
phases have been implemented in Matlab. The scale factor
estimation between two adjacent maps takes about120ms
and the loop optimization using the IEKF takes800ms
when performing 6 iterations. The most expensive part is the

Algorithm 4 Recursive Modified Geometric Constraints:
variablescaleGCBB (H, i) : find pairings for observationEi

if i > m then {Leaf node}
if num pairings(H)> num pairings( Best.H)then

Best.H⇐ H
Best.scale⇐ binary.scale

end if
else{Not leaf node}

if num pairings(H) == 0 then {This is the first pair}
for ∀j | (unary(i,j) == true)do

variablescaleGCBB([H j], i+1)
end for

else if num pairings(H) == 1 then {This is the 2nd pair}
k ⇐ { K | H(K) 6= 0 }
distanceobs⇐ binary.O.distances(i,k)
for ∀j | (unary(i,j) == true)do

distancefeat⇐ binary.F.distances(j,H(k))
if distancefeat 6= 0 then

binary.scale⇐ distanceobs÷ distancefeat
binary.satisfies⇐ binary constraints(binary.scale)
variablescaleGCBB([H j], i+1)

end if
end for

else{Normal recursion with binary constraints calculated}
for ∀j | ( (unary(i,j) == true) AND ({∀k | H(k) 6= 0 }

AND binary.satisfies(i, k, j, H(k))}) ) do
variablescaleGCBB([H j], i+1)

end for
end if

end if
{Checking if can do better}
if num pairings(H) + m - i> num pairings(Best.H)then

variablescaleGCBB([H 0], i+1){Star node:Ei no paired}
end if



−100 −50 0 50 100 150

15 maps with 1505 features

−100 −50 0 50 100 150

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

15 maps with 1505 features

(a) Local maps obtained with pure monocular SLAM

−150 −100 −50 0 50 100 150

15 maps with 1505 features

−150 −100 −50 0 50 100 150 −250

−200

−150

−100

−50

0

15 maps with 1505 features

(b) Hierarchical map auto-scaled, before loop detection

−50 0 50 100 150

15 maps with 1505 features

−50 0 50 100 150 −1000100
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

15 maps with 1505 features

(c) Hierarchical map after loop closing

Fig. 5. Results obtained mapping a loop of several hundred meters with a camera in hand: side view (left) and top view (right).



scale-invariant map matching algorithm that takes around one
minute in our current Matlab implementation. We expect that
an optimized C++ implementation running on background will
provide close to real time loop detection.

V. CONCLUSION

In this paper we have demonstrated for the first time
that monocular vision-only SLAM – with a single hand-
held camera providing theonly data input – can achieve
large-scale outdoor closed-loop mapping in near real-time.
Achieving these results which such basic hardware opens up
new application areas for vision-based SLAM, both in flexible
(possibly low-cost) robotic systems and related areas such as
wearable computing. The success of our system lies in the
careful combination of the following elements:

• An inverse depth representation of 3D points. It allows the
use of partial information, inherent to monocular vision,
in a simple and stable way. All features, even those
far from the camera, immediately contribute valuable
information.

• A branch and bound joint compatibility algorithm that
allows the rejection of measurements coming from mov-
ing objects that otherwise plague and corrupt the map.
Although texture gives a powerful signature for matching
points in images, the spatial consistency that this algo-
rithm enforces is essential here.

• A Hierarchical SLAM paradigm in which sequences of
local maps of limited size are managed, allowing the
system to work with bounded complexity on local maps
during normal operation. By running the map matching
algorithm in the background, the system can attain real
time execution.

• A new map matching algorithm to detect large loops
which takes into account the unobservability of the scale
intrinsic to pure monocular SLAM. This algorithm allows
us to detect loop closures even when the maps involved
have been computed with different scales.

Future work includes improving the map matching algo-
rithm to reach real time performance, possibly using invariant
feature descriptors. A current limitation of Hierarchical SLAM
is the fact that it does not make use of matchings between
neighboring maps. We plan to investigate new large mapping
techniques that can overcome this limitation, obtaining maps
closer to the optimal solution.
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Thanks to Jośe M. M. Montiel and Javier Civera for
providing their code for inverse-depth visual SLAM and the
fruitful discussions maintained and to Paul Smith for his help
with the initial experiments.

REFERENCES

[1] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: real-
time accurate mapping of large environments,”IEEE Transactions on
Robotics, vol. 21, no. 4, pp. 588–596, August 2005.

[2] J. M. M. Montiel, J. Civera, and A. J. Davison, “Unified inverse depth
parametrization for monocular SLAM,” inProceedings of Robotics:
Science and Systems, Philadelphia, USA, August 2006.

[3] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part I,” IEEE Robotics & Automation Magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[4] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (SLAM): part II,” IEEE Robotics & Automation Magazine, vol. 13,
no. 3, pp. 108–117, 2006.

[5] N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian,
and M. E. Munich, “The vSLAM algorithm for robust localization and
mapping,” in IEEE Int. Conf. on Robotics and Automation, 2005, pp.
24–29.

[6] J. Folkesson, P. Jensfelt, and H. Christensen, “Vision SLAM in the
Measurement Subspace,”IEEE Int. Conf. Robotics and Automation, pp.
30–35, 2005.

[7] R. Sim and J. J. Little, “Autonomous vision-based exploration and
mapping using hybrid maps and rao-blackwellised particle filters,” in
IEEE/RSJ Conf. on Intelligent Robots and Systems, 2006.

[8] T. Lemaire and S. Lacroix, “SLAM with panoramic vision,”Journal of
Field Robotics, vol. 24, no. 1-2, pp. 91–111, 2007.

[9] R. M. Eustice, H. Singh, J. J. Leonard, M. Walter, and R. Ballard,
“Visually navigating the RMS titanic with SLAM information filters,”
in Proceedings of Robotics: Science and Systems, 2005.

[10] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” inIEEE
Conference on Computer Vision and Pattern Recognition, 2004.

[11] K. Konolige, M. Agrawal, R. C. Bolles, C. Cowan, M. Fischler, and
B. P. Gerkey, “Outdoor mapping and navigation using stereo vision,” in
Proc. of the Intl. Symp. on Experimental Robotics (ISER), July 2006.

[12] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in9th International Conference on Computer Vision,
Nice, 2003.

[13] E. Eade and T. Drummond, “Scalable monocular SLAM,” inIEEE Conf.
on Computer Vision and Pattern Recognition, New York, 2006.

[14] D. Chekhlov, M. Pupilli, W. W. Mayol, and A. Calway, “Real-time and
robust monocular SLAM using predictive multi-resolution descriptors,”
in 2nd International Symposium on Visual Computing, 2006.

[15] “2d3 web based literature,” URL http://www.2d3.com/, 2005.
[16] P. Newman and K. Ho, “SLAM-Loop Closing with Visually Salient

Features,”IEEE Int. Conf. on Robotics and Automation, pp. 635–642,
2005.

[17] J. Neira and J. D. Tard́os, “Data association in stochastic mapping
using the joint compatibility test,”IEEE Transactions on Robotics and
Automation, vol. 17, no. 6, pp. 890–897, 2001.

[18] W. Grimson, “Recognition of object families using parameterized mod-
els,” Proceedings of the First International Conference on Computer
Vision, pp. 93–100, 1987.

[19] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” inRobotics Research, The Fourth Int. Symposium,
O. Faugeras and G. Giralt, Eds. The MIT Press, 1988, pp. 467–474.

[20] Y. Bar-Shalom, X. Li, and T. Kirubarajan,Estimation with Applications
to Tracking and Navigation. New York: John Willey and Sons, 2001.

[21] A. J. Davison and D. W. Murray, “Simultaneous localization and map-
building using active vision,”IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 7, pp. 865–880, 2002.

[22] J. Shi and C. Tomasi, “Good features to track,” inIEEE Conf. on
Computer Vision and Pattern Recognition, Seattle, Jun 1994, pp. 593–
600.

[23] J. Neira, J. D. Tard́os, and J. A. Castellanos, “Linear time vehicle
relocation in SLAM,” in IEEE Int. Conf. on Robotics and Automation,
Taipei, Taiwan, September 2003, pp. 427–433.


